Table 1. Summary of previously reported IDH1 p.R132 mutations in human diseases

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Total number of samples</th>
<th>Samples with mutation</th>
<th>Mutation frequency</th>
<th>Frequency range</th>
<th>Number of IDH1-related reports [References]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliomas</td>
<td>18297</td>
<td>6432</td>
<td>35.2%</td>
<td>0.0-100.0%</td>
<td>168 [1-167]</td>
</tr>
<tr>
<td>Non-glioma brain tumors</td>
<td>2232</td>
<td>675</td>
<td>30.2%</td>
<td>0.0-100.0%</td>
<td>30 [1, 3, 7, 12, 45, 59, 80, 149, 168-189]</td>
</tr>
<tr>
<td>Hematological malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>15509</td>
<td>1053</td>
<td>6.8%</td>
<td>0.0-25.0%</td>
<td>68 [3, 6, 29, 64, 190-253]</td>
</tr>
<tr>
<td>MDS/ MPD / MPN</td>
<td>4376</td>
<td>82</td>
<td>1.9%</td>
<td>0.0-18.8%</td>
<td>28 [193, 196, 199, 200, 206, 209, 213, 218, 226, 250, 254-271]</td>
</tr>
<tr>
<td>NHL</td>
<td>640</td>
<td>1</td>
<td>0.2%</td>
<td>0.0-0.8%</td>
<td>4 [170, 222, 226, 272]</td>
</tr>
<tr>
<td>ALL</td>
<td>567</td>
<td>3</td>
<td>0.5%</td>
<td>0.0-3.2%</td>
<td>6 [3, 6, 196, 215, 222, 229]</td>
</tr>
<tr>
<td>CML</td>
<td>479</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>7 [6, 196, 209, 218, 226, 273, 274]</td>
</tr>
<tr>
<td>HL</td>
<td>122</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>3 [170, 222, 226]</td>
</tr>
<tr>
<td>MM</td>
<td>92</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2 [3, 226]</td>
</tr>
<tr>
<td>CLL</td>
<td>18</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2 [6, 226]</td>
</tr>
<tr>
<td>AMML</td>
<td>3</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1 [226]</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesenchymal tumour</td>
<td>1200</td>
<td>74</td>
<td>6.2%</td>
<td>6.2%</td>
<td>1 [275]</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>926</td>
<td>3</td>
<td>0.3%</td>
<td>0.0-2.9%</td>
<td>8 [2, 3, 6, 23, 149, 170, 276, 277]</td>
</tr>
</tbody>
</table>
Breast cancer 603 1 0.2% 0.0-100.0% 6 [2, 3, 6, 149, 170, 278]
Lung cancer 517 0 0.0% 0.0% 6 [2, 3, 6, 90, 149, 170]
Sarcoma 529 1 0.2% 0.0-100.0% 3 [170, 279, 280]
Pheochromocytoma 314 0 0.0% 0.0% 2 [281, 282]
Prostate cancer 387 7 1.8% 0.0-2.7% 6 [2, 3, 6, 149, 170, 283]
Pancreatic cancer 293 0 0.0% 0.0% 4 [2, 6, 170, 277]
Thyroid Cancer 504 19 3.8% 0.0-15.7% 6 [2, 23, 149, 170, 284, 285]
Cholangiocarcinoma 482 45 9.3% 7.1-14.9% 3 [277, 286, 287]
GIST 180 0 0.0% 0.0% 2 [2, 170]
Enchondroma and related diseases 278 103 37.1% 1.0-90.0% 4 [288-291]
Gastric cancer 190 0 0.0% 0.0% 3 [3, 6, 277]
Ovarian cancer 176 0 0.0% 0.0% 4 [2, 3, 6, 149]
Hepatocellular carcinoma 159 0 0.0% 0.0% 3 [3, 23, 277]
Paraganglioma 155 1 0.6% 0.0-0.8% 2 [281, 282]
Renal cancer 161 0 0.0% 0.0% 5 [2, 3, 149, 170, 292]
Melanoma 173 3 1.7% 0.0-5.1% 4 [2, 149, 279, 293]
Squamous cell carcinoma (oral) 90 0 0.0% 0.0% 1 [229]
Biliary tract cancer 87 9 10.3% 10.3% 1 [277]
Esophageus cancer 73 0 0.0% 0.0% 2 [2, 3]
Bladder cancer 38 0 0.0% 0.0% 1 [2]
Fibrous histiocytoma 36 0 0.0% 0.0% 1 [170]

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Cases</th>
<th>IDH1</th>
<th>IDH2</th>
<th>IDH1+IDH2</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial carcinoma</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 [3]</td>
</tr>
<tr>
<td>Gallbladder cancer</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 [149, 277, 286]</td>
</tr>
<tr>
<td>Squamous cell carcinoma (skin)</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 [3]</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 [2, 3, 279]</td>
</tr>
<tr>
<td>Endometrial</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 [149]</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 [2, 3]</td>
</tr>
<tr>
<td>NPC</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 [170]</td>
</tr>
<tr>
<td>HNSCC</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 [2]</td>
</tr>
</tbody>
</table>

^a The last PubMed search was performed on March 8, 2013.

^b Papers with redundant data were not included in this table.
Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

with IDH1 and IDH2 mutation analyses and literature review of 43 cases. J Neurooncol, 2011; 102(3): 477-84

77. Utsuki S, Oka H, Miyajima Y, et al: Adult cerebellar glioblastoma cases have different characteristics from supratentorial glioblastoma. Brain Tumor Pathol, 2012; 29(2): 87-95

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

16(3): 161-70

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Oncol, 2012; 14(1): 109-16

204. Paschka P, Schlenk RF, Gaidzik VI, et al: IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically

206. Rocquain J, Carbuccia N, Trouplin V, et al: Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer, 2010; 10: 401

207. Schnittger S, Haferlach C, Ulke M, et al: IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood, 2010; 116(25): 5486-96

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

Leuk Res, 2010; 34(8): 1091-3

Lu J et al. IDH1 p.R132 mutations may not be actively involved in the carcinogenesis of hepatocellular carcinoma. Medical Science Monitor, 2013. in press

4945-51

